University Environmental Health & Safety Departments: How to Handle Compressed Nitrogen and Cryogenics

University Environmental Health & Safety Departments: How to Handle Compressed Nitrogen and Cryogenics

*Click here to read more about product An explosion at a university research lab in Hawaii last year highlights the dangers of working with compressed gas and the need for safety equipment on campus. Learn the dangers of working with compressed gas, how an oxygen deficiency monitor can help, and campus safety best practices. Compressed Gas on Campus: Uses and Dangers Compressed gases including nitrogen, argon, and oxygen are widely used on campuses. These gases have many practical and educational uses across educational institutions. While the level of risk varies across schools, a few examples will illustrate the benefits and the risks of using compressed gas on campus. Argon gas is critical in the 3D printing process, which campus design, fine arts, applied arts, and sciences may use. Culinary programs may use liquid nitrogen for cooking and freezing, and chemistry labs may use N2 as well. Autoclaves, which sterilize equipment, are regularly used in scientific, medical, and industrial programs. Sports programs and physical therapy training programs may use cryotherapy for injury recovery. Cryotherapy chambers rely on nitrogen to chill the air. The chambers can turn deadly if a nitrogen leak occurs. These gases may be used by facilities personnel, researchers, faculty members or teaching assistants and students assisting with teaching labs. No matter which gas students are working with, they are at risk if the gas is not handled, used, stored, or transported properly. As these few examples illustrate, there are many opportunities for dangerous leaks, explosions, or fires on campus if safety protocol isn’t followed. Many schools find the gases are not properly stored, which leaves everyone on campus in danger. A recent safety bulletin... read more
Nitrogen Refrigerated Trucks a New Trend? An Alternative to Diesel Powered  Refrigeration

Nitrogen Refrigerated Trucks a New Trend? An Alternative to Diesel Powered Refrigeration

Thanks to technological innovations, the food distribution industry has a greener way to protect refrigerated food during transit: Nitrogen refrigeration. The existing system relies on diesel-powdered mechanical refrigeration units. Although these units are effective, they release significant levels of noise and air pollution. While the new innovations decrease emissions to safeguard the environment, there is a hidden health risk transportation companies must take into account. How Liquid Nitrogen Refrigeration Works The new system uses a liquid nitrogen system to cryogenically chill food. A storage tank mounted underneath the truck can be easily refilled when empty. Since the tank is stored outside the truck, the liquid nitrogen never comes into direct contact with the food. To cool the refrigerated container, liquid nitrogen first passes through a heat exchanger. As the nitrogen moves through the heat exchanger, it evaporates. High-powered fans inside the container circulate the chilled air through the compartment, helping keep all food safely chilled below the temperature danger zone. The traditional mechanical refrigeration system emits significant noise while in operation. Even when the truck itself is off, the refrigeration unit can cause as much as 80 dB of noise, which is roughly as much noise as a busy urban environment. This noise level exceeds the typical noise pollution levels in cities, thus limiting the hours when truckers can make deliveries. Additional downsides to the mechanical refrigeration system include reliance on harmful refrigeration chemicals and expensive maintenance and repair costs. In contrast, the liquid nitrogen system falls beneath the noise pollution thresholds, so deliveries can be made at any time. This benefits both truckers and restaurants, grocery stores, and other businesses who may want to accept deliveries... read more
Neon Gas and Where it is Used. PureAire Oxygen Deficiency Monitors for Safety and Why a Monitor May be Required?

Neon Gas and Where it is Used. PureAire Oxygen Deficiency Monitors for Safety and Why a Monitor May be Required?

Neon gas has a range of uses in industry, including in the popular business signs advertising stores as open. Explore some of the less well-known ways to use neon and learn how use of the gas may require installation of an oxygen deficiency monitor to protect worker safety.   Uses for Neon Gas Neon gas can be filtered from helium using activated charcoal in a low temperature environment, or through the selective adsorption method. Once filtered out, neon can be used in the manufacturing of television tubes, plasma screens, and more.  Ne or neon gas is used for advertising signs, as are other noble gases. Neon is also used for television tubes, plasma screens, wave meter tubes, inside lightning arresters, and with high-voltage indicators. The gas itself has no color until an electric charge is applied that alters the structure of the Ne molecules. Neon gas only produces a reddish orange color light, so other inert gases are used to make other colors. In plasma screens, individual neon lights interact with phosphors within the screen to product the vibrant colors. This interaction allows neon to make other colors.  In its liquid form, neon is extremely cold, and can act as a stronger refrigerant than liquid hydrogen or helium. Thus, the gas can be converted to liquid for use in cryogenic health tanks or other applications. There are potential cryonics applications for neon as well.  In recent years, noble gases including neon have been used to detect fracking leaks. Neon can be tracked as it moved, illustrating the path of leaked methane from the frack site. Neon is a good choice for this purpose since... read more
Are You An OLED Display Manufacturer? Why PureAire Monitoring Systems May Be Your Next Partner

Are You An OLED Display Manufacturer? Why PureAire Monitoring Systems May Be Your Next Partner

OLED — organic LED — is a top desired feature in smartphones, yet manufacturers do not have the production capacity needed to meet industry demands. Since OLED devices have stronger contrast, a faster response time, a better quality, and a lower cost, there are many reasons for consumers as well as manufacturers to embrace this trend. To build capacity needed to product OLED screens for smartphones without sacrificing employee safety, semiconductor plants need two devices: An oxygen analyzer and an oxygen monitor. OLED Manufacturing and its Risks  A good display is one of the strongest motivators to purchase a device, such as a television or a smartphone. The superior quality the OLED devices deliver will be a major driver for consumers, if these screens can make it onto a wide array of device types. Next-generation OLED screens can even curve or roll up, like a newspaper. Kateeva is a company worth noting, as they are advancing OLED displays with over 200 million raised since 2008, using their YIELDjet FLEX printing tools. Two years after its debut, Kateeva’s YIELDjet FLEX tool is the undisputed leader in the industry. Kateeva’s President & COO was named “Inventor of the Year” for 2016 by the Silicon Valley Intellectual Property Law Association. At present, only a handful of smartphone screens come with an organic LED. Apple hopes to ship all iPhones with OLEDs by 2018, but some doubt that facilities will have enough production to meet demands. At present, there is only one producer, Samsung, who is on board to provide the OLED screens. Efficient OLEDs are made using either an inkjet printing process or a process known as organic vapor phase deposition (OVPD). In the OVPD process, an inert gas (usually nitrogen or N2) is used as a “carrier gas” to transport the organics... read more
Nitrogen Demand Increases for Semiconductor: How Safe Are You?

Nitrogen Demand Increases for Semiconductor: How Safe Are You?

As users demand ever-smaller smartphones and better televisions, semiconductor manufacturing plants are tasked with developing new products faster and using new materials. Key to the continued success of the semiconductor industry are inert gases, which include nitrogen and argon. When used safely, both nitrogen and argon play a number of important roles within the semiconductor plant. Yet, these gases poses a health hazard for employees if a leak occurs. How and Why Nitrogen is used in Semiconductor Manufacturing Plants  Nitrogen is used throughout the manufacturing process, from purging pumps to abatement. Nitrogen is also used in the process, especially now that fab size is growing. In a modern semiconductor manufacturing plant, as much as 50,000 cubic meters of nitrogen gas are used every hour. To meet this demand, semiconductor manufacturing plants are installing nitrogen generators onsite. Generators mean a cheap, efficient, and always-ready supply of nitrogen gas to supply production. As long as nitrogen gas is stored safely in the generator and used properly, there is no health risk. Yet if the generator or supply lines develop a leak, nitrogen gas can escape and deplete oxygen in the environment. Since nitrogen gas is both odorless and colorless, there is no way that staff can monitor their risk. Along with nitrogen, argon gas is used in semiconductor manufacturing, most notable as a sputtering gas. Like nitrogen, argon gas depletes oxygen from the environment. Like nitrogen, the gas has no color or odor. In a closed area, the gas can deplete oxygen and cause respiratory problems and eventual suffocation. How an Oxygen Analyzer Can Protect Staff Working in a Semiconductor Manufacturing Plant  If either nitrogen or argon were... read more
Tunnel Freezing and Flash Freezing Food with Nitrogen: Oxygen Monitors and Why They May be Required

Tunnel Freezing and Flash Freezing Food with Nitrogen: Oxygen Monitors and Why They May be Required

New developments in cryogenic freezing are transforming the frozen food industry by making it easier to freeze all sorts of items quickly while retaining the highest nutritional value. Cryogenic and tunnel freezers are easy to use, yet they pose a hidden health risk. Learn why you may need an O2 monitor if your frozen food manufacturing facility relies on cryogenic freezers. How Cryogenic Freezers Work Cryogenic freezers allow for continuous freezing of food, increasing output without requiring a large amount of space. Compared to mechanical freezers, which take longer to freeze products, they increase both the production and the quality with a low investment of capital. In particular, cryogenic freezers are useful for freezing par-baked goods, which are partially baked before being frozen for storage. Par-baked items allow fast-food restaurants, supermarkets, sandwich shops, cafes, and other institutions to offer fresh, healthy baked goods without needing to bake from-scratch every day. For a commercial baking facility, investing in a cryogenic freezer is the best way to increase their output, grow their business, and become more profitable. Cryogenic freezers work by using liquid nitrogen to quickly chill items to safe temperatures for frozen storage. As in any environment where liquid nitrogen is present, there is a danger of oxygen depletion and asphyxiation. Thus, it is always a good idea to have an O2 deficiency monitor present onsite to protect the health of employees. One subset of cryogenic freezers, the tunnel freezer, uses a continuous freezing model of a conveyor belt, an injection system, and an exhaust system to vent gases. When the texture of the finished product is paramount, as in... read more
A Nitrogen Culinary Experience and How to Remain Safe with Use of Oxygen Monitors

A Nitrogen Culinary Experience and How to Remain Safe with Use of Oxygen Monitors

As modernist cuisine has become more popular, restaurant and home chefs alike are turning to liquid nitrogen to create spheres, gels, foams, and even ice cream. While liquid nitrogen can be safely used in a range of culinary applications, there are important safety risks to be aware of when working with this substance. The Hidden Dangers of Liquid Nitrogen in the Kitchen Nitrogen can help chefs freeze alcohol, which doesn’t freeze under freezer temperatures. Nitrogen also creates a very rich ice cream, since it makes superfine ice crystals. By using liquid nitrogen to freeze foods, chefs can keep more flavor in the food and preserve higher amounts of the food’s nutrients. It’s important to note that nitrogen is used only to alter the state of food. The nitrogen itself is not consumed. While it is no wonder that nitrogen has become so popular in the kitchen, the substance can pose a health hazard. Liquid nitrogen is extremely cold. If the substance were to spill on your clothing or get in your eyes, it could cause severe burns. Thus, many culinary workers wear an extra layer of clothing (such as an apron) to prevent nitrogen from causing skin burns. Special gloves protect the hands, and safety goggles prevent the eyes from nitrogen burns. While many are aware of the burn danger from liquid nitrogen, there is a more insidious hazard. When liquid nitrogen meets the air, it starts to evaporate and turns into nitrogen gas. Nitrogen gas is a known oxygen displacer, so the more gas that escapes, the less oxygen the air has. Quickly, nitrogen gas can deplete the air to low... read more
The Path to Safety for Pharmaceutical and Laboratories: Why O2 Deficiency Monitors May be Required?

The Path to Safety for Pharmaceutical and Laboratories: Why O2 Deficiency Monitors May be Required?

To safeguard against gas leaks in pharmaceutical industries and laboratories, businesses are turning to oxygen deficiency monitors. Learn when, where, and why an oxygen monitor or O2 monitor may be required. Oxygen Monitors in Medical and Pharmaceutical Settings In the hospital setting, nitrogen gas is widely used. During surgeries, nitrogen powers equipment and preserves blood and tissues. Nitrogen gas is also used to freeze and destroy tissue. Hospitals work with other gases, such as carbon monoxide, for lung diffusion testing and culturing. Laboratories growing cultures for analysis, testing, and research require that the tissue samples be grown under strict environmental conditions. Medical gases can control the environment to ensure that tissue samples are not contaminated by any sort of bad bacteria. Magnetic resonance imaging machines use nitrogen gas to cool the magnet and keep the machine working properly. As such, it is critical to have an oxygen monitor in an MRI room to protect the safety of patients in the MRI machine and technicians performing the MRI. In 2000, a technician was killed and several others were injured when nitrogen escaped from the closed chamber and into the room. Pharmaceutical facilities also rely on nitrogen gas for multiple uses. Since the gas can keeps oxygen out of an environment, it can ensure the purity of a chemical compound or preserve the longevity of a packaged medical product. Nitrogen is also kept on hand as a natural fire suppressant and purifier. Nitrogen gas generators allow pharma plants to access nitrogen gas on demand for a low cost. How an Oxygen Deficiency Monitor Protects Workers in Laboratories, Hospitals, and Pharma Staff and patients in hospitals, pharma, and laboratories need to stay safe.... read more
Olympic Training: Use of Cryotherapy and Hypoxic High Altitude Training

Olympic Training: Use of Cryotherapy and Hypoxic High Altitude Training

Olympic athletes have been known to try some pretty strange things to enhance their performance. Major Olympic swimming star Michael Phelps has been relying on a special device for the last year, a high-altitude sleep chamber that retails for $15,000. While therapies like high-altitude training and cryotherapy can be beneficial, they do have risks. Learn why you need an oxygen monitor for cryotherapy and high-altitude training chambers. How High Altitude Training Benefits Athletes A high-altitude chamber mimics the conditions of high altitude. Phelps keeps the air inside his chamber at 8,500 to 9,000 feet. High altitude environments have less oxygen than low altitude environments. As a result, your body has to work harder to breathe. For Phelps, this means that he can train his body to perform better even while getting a good night’s sleep. The high-altitude chamber Phelps used is made by Hypoxico. Their high altitude chambers can be adjusted to a maximum level of 12,500 feet. By sleeping in a low oxygen environment and living in an oxygen-rich environment, athletes can avoid the fatigue and dehydration associated with living in a high altitude environment. Since bodies produce more red blood cells at high altitude, the sleep chamber also promotes faster muscle recovery. This is essential for training. Michael Phelps is far from the only athlete to try this type of sleep training. It’s popular among endurance runners, who rely on breathing capacity to fuel their runs. Dwayne Wade, Lebron James, and Santonio Holmes also use the high altitude training. Pro golfer Tiger Woods reportedly relies on high altitude training too. How Cryotherapy Benefits Athletes In addition to... read more
Use of Oxygen Monitors for Nitrogen, Argon, or Cryogenics and Where They Are installed

Use of Oxygen Monitors for Nitrogen, Argon, or Cryogenics and Where They Are installed

An oxygen deficiency monitor or O2 monitor is found in many settings where colorless, odorless gases — including nitrogen, argon, CO2, and cryogenic gases — are used. Always monitoring, the oxygen detector can tell when gas levels rise above those deemed safe, and let off a timely alarm. Learn which settings commonly use an O2 monitor, how the monitor works, and why it is beneficial.  How Does an Oxygen Deficiency Monitor Work?  With the name of oxygen monitor, you might wonder why these devices are used in the presence of other gases, such as nitrogen. Gases like nitrogen and argon deplete oxygen from the environment. If you introduce nitrogen into a lab setting, for example, oxygen levels start to drop. Since nitrogen does not have a color or scent, lab workers would be unable to perceive the leak.  As oxygen levels fall, lab workers would become confused and experience respiratory difficulties and loss of coordination. In a matter of minutes, lab workers could die from asphyxiation.  When an oxygen deficiency monitor is installed, it becomes easy to tell when a potentially hazardous gas has escaped into the room and is depleting levels of oxygen. Set to go off when oxygen falls below safe breathing levels, the O2 monitor flashes an alert and sounds an alarm to provide immediate notification. This way, staff have enough time to safely clear the premises before experiencing negative health effects. These monitors offer a cost-effective way to protect staff and maintain a safe working environment, and are a best practice for working environments that use these gases.   Where Oxygen Monitors Are Installed Since oxygen monitors protect against a... read more